Hydrogen engine installed at the AIST Fukushima Renewable Energy Institute

MHIET conducts combustion test for hydrogen engine with pure hydrogen

published on 2021 02 15

MHIET is strengthening its efforts to develop a hydrogen engine based on its diesel and gas engines and make it available on the market. In a joint project with AIST, stable combustion of 100% hydrogen fuel with a single cylinder engine was achieved. The aim is to make 1 MW-class hydrogen engine available for the introduction of hydrogen economy in the 2030s.

Hydrogen-engine-installed-at-the-AIST-Fukushima-Renewable-Energy-Institute

Tokyo, January 21, 2021 - Mitsubishi Heavy Industries Group has been working on the development of various products that will have zero CO2 emissions. Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. (MHIET, President: Takeshi Kajino, Sagamihara, Kanagawa Prefecture), a part of the group, is strengthening its efforts to develop a hydrogen engine based on their existing diesel and gas engines. MHIET has conducted a combustion test of a hydrogen engine in a joint research project with Japan’s National Institute of Advanced Industrial Science and Technology (AIST, President: Kazuhiko Ishimura). A modified single cylinder gas engine (bore 170mm x stroke 220mm) based on MHIET’s 4-stroke reciprocating gas engine "GSR series" offered in 6 to 16 cylinders was installed at the AIST Fukushima Renewable Energy Institute (Koriyama, Fukushima Prefecture).The test was carried out to identify the conditions to achieve stable combustion of 100% hydrogen without emitting CO2.

MHIET and AIST began the joint research on combustion of hydrogen on an engine in fiscal 2019. MHIET and MHI Research and Innovation Center designed and built the hydrogen engine using the knowledge of hydrogen combustion technology, industrial-use diesel engines and natural gas engines, studied the conditions for optimum combustion, and analyzed the test data. AIST constructed and operated the hydrogen supply equipment and the test bench and acquired data utilizing its experience in developing combustion technology for high-power, high thermal efficiency, and low NOx (nitrogen oxide) hydrogen engines for large scale power generation.

Hydrogen has a wide flammability range and a high combustion wave propagation velocity, making the engine prone to abnormal combustion such as backfire and knocking (Note1). The test used MHIET’s existing lean-burn gas GSR series engine with additional modifications in fuel supply method, ignition method, timing of intake air valve closing, and excess air ratio etc. for optimum combustion to determine the conditions that ensure stable combustion with hydrogen-only firing and premixed firing. Converting the test results, the maximum output is estimated to be 340kW for 6-cylinder engine and 920kW for 16-cylinder engine. MHIET intends to accumulate more test data that will lead to the realization of multi-cylinder hydrogen engines and aims to make the engines available for the introduction of hydrogen economy in the 2030s.

(note 1)
Backfiring is the movement of a flame in the opposite direction toward the engine’s intake air passage, which damages the engine intake system. Knocking occurs when the fuel-air mixture self-ignites because the ignition timing is too early or the compression ratio is too high, resulting in a rapid rise in the cylinder pressure and producing a knocking sound, vibration, and damage to internal components.
(note 2) A combined power generating system of renewable energy, reciprocating engine and batteries that contains optimal control for stable power supply. Please see the following URL for details http://www.mhiet.co.jp/en/news/20190624.html?_ga=2.53972715.252666608.1613381170-7748832.1612788895 

This piece first appeared on mhi.com.

Care to share?

GLOBAL NETWORK Test

Over 300 companies, covering 12 Industry segments around the world

FIND YOUR LOCAL DEALER